

Features

- VDS = -20V,ID = -2.6A
- RDS(ON) < 59mΩ
- Advanced MOSFET process technology
- Special designed for PWM, load switching and general purpose applications
- Ultra low on-resistance with low gate charge
- Fast switching and reverse body recovery
- 150°C operating temperature

RoHS COMPLIANT

Marking: 2301

SOT-23

Assignments

Schematic Diagram

Description

It utilizes the latest processing techniques to achieve the high cell density and reduces the on-resistance with high repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in powerswitchingapplicationanda widevariety of otherapplications.

Absolute Maximum Ratings (T _A =25°C unless otherwise noted)					
Parameter	Symbols	V alue	Unit		
Drain-Source Voltage	V _{DS}	-20	V		
Gate -Source Voltage	V _{GS}	±12			
Drain Current-Continuous@ Current-Pulsed (Note 1)	I _D (25℃)	-2.6	А		
Pulsed Drain Current	I _{DM}	-10			
Maximum Power Dissipation	P _D	1.25	W		
Operating Junction and Storage Temperature Range	T _J T _{STG}	-50 to +150	°C		
Junction-to-case	R _{θJC}	Max 100	°C/W		

Electrical Characteristics (T _A = 25 °C unless otherwise noted)						
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_D = -250 \mu A$	-20			V
Gate threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-0.4		-1	V
Drain-to-Source leakage current	I _{DSS}	$V_{DS} = -20V, V_{GS} = 0V$			-1	uA
Static Drain-to-Source on-resistance	R _{DS(on)}	$V_{GS} = -4.5$ $I_D = -2A$		59	67	mΩ
		V _{GS} = -2.5 I _D = -1.8A		76	83	mΩ
Gate-to-Source forward leakage	I _{GSS}	V _{GS} =12V			100	nA
		V _{GS} = -12V			-100	nA
Votal gate charge	Qg	Ιο = -2.3Δ		5.8		
Gate-to-Source charge	Q _{gs}	V _{DS} =-6V,		0.84		nC
Gate-to-Drain("Miller") charge	Q _{gd}	V _{GS} = -4.5V		1.6		
Turn-on delay time	t _{d(on)}	$t_{d(on)}$ V _{GS} =-4.5V,		7		
Rise time	tr	V _{DD} =-20V		14		
Turn-Off delay time	t _{d(off)}	$R_{GEN}=3\Omega$		20		ns
Fall time	t _f	- KL-1002		7		
Input Capacitance	C _{lss}	$V_{GS} = 0V$		394		
Output Capacitance	C _{oss}	$V_{DS} = -20V$		48		PF
Reverse Transfer Capacitance	C _{rss}	F=1MHZ		41		

Source-Drain Ratings and Characteristics						
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Continuous Source Current (Body Diode)	۱ _S	MOSFET symbol			-2.6	
Pulsed Source Current (Body Diode)	I _{SM}	p-n junction diode			-10	A
Diode Forward Voltage	V _{SD}	I _S =-1A, V _{GS} =0V		-0.8	-1.2	V

Ratings and Characteristics Curves

(TA = 25°C unless otherwise noted)

Switching Time Test Circuit:

Switching Waveforms:

Notes:

- 1. Calculated continuous current based on maximum all owable junction temperature.
- 2. Repetitive rating; pulse width limited by max.junction temperature.
- 3. The power dissipation PD is based on max. junction temperature, using junction-to-case thermal resistance.

SSF2301UP GOOD-ARK Electronics

Ratings and Characteristics Curves

(TA = 25°C unless otherwise noted)

Figure5. Drain Current vs. Case Temperature

Figure6. Capacitance

Package Outline Dimensions

in inches (millimeters)

DEE	Millimeter		DEE	Millin	Millimete	
	Min.	Max.	KEF.	Min.	Max.	
Α	2.80	3.00	G	1.80	2.00	
В	2.30	2.50	H	0.90	1.1	
С	1.20	1.40	K	0.10	0.20	
D	0.30	0.50	J	0.35	0.70	
E	0	0.10	Ц	0.92	0.98	
F	0.45	0.55	М	0°	10°	

Revision History

Document Version	Date of release	Description of changes
Rev.A	2020.06.15	First issue

Disclaimers

These materials are intended as a reference to assist our customers in the selection of the Suzhou Good-Ark product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Suzhou Good-Ark Electronics Co., Ltd.or a thirdparty.

Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Suzhou Good-Ark Electronics Co., Ltd. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Suzhou Good-Ark Electronics Co., Ltd. for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Suzhou Good-Ark Electronics Co., Ltd. by various means, including our website homepage. (http://www.goodark.com)

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, Please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

The prior written approval of Suzhou Good-Ark Electronics Co., Ltd. is necessary to reprint or reproduce in whole or in part these materials.

Please contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized distributor for further details on these materials or the products contained herein.